Sparse multi-output Gaussian processes for online medical time series prediction
نویسندگان
چکیده
منابع مشابه
Sparse Convolved Gaussian Processes for Multi-output Regression
We present a sparse approximation approach for dependent output Gaussian processes (GP). Employing a latent function framework, we apply the convolution process formalism to establish dependencies between output variables, where each latent function is represented as a GP. Based on these latent functions, we establish an approximation scheme using a conditional independence assumption between t...
متن کاملMultiple-step Time Series Forecasting with Sparse Gaussian Processes
Forecasting of non-linear time series is a relevant problem in control. Furthermore, an estimate of the uncertainty of the prediction is useful for constructing robust controllers. Multiple-step ahead forecasting has recently been addressed using Gaussian processes, but direct implementations are restricted to small data sets. In this paper we consider multiple-step forecasting for sparse Gauss...
متن کاملCollaborative Multi-output Gaussian Processes
We introduce the collaborative multi-output Gaussian process (GP) model for learning dependent tasks with very large datasets. The model fosters task correlations by mixing sparse processes and sharing multiple sets of inducing points. This facilitates the application of variational inference and the derivation of an evidence lower bound that decomposes across inputs and outputs. We learn all t...
متن کاملSparse Gaussian Processes for Multi-task Learning
Multi-task learning models using Gaussian processes (GP) have been recently developed and successfully applied in various applications. The main difficulty with this approach is the computational cost of inference using the union of examples from all tasks. The paper investigates this problem for the grouped mixed-effect GP model where each individual response is given by a fixed-effect, taken ...
متن کاملGaussian processes for time-series modelling.
In this paper, we offer a gentle introduction to Gaussian processes for time-series data analysis. The conceptual framework of Bayesian modelling for time-series data is discussed and the foundations of Bayesian non-parametric modelling presented for Gaussian processes. We discuss how domain knowledge influences design of the Gaussian process models and provide case examples to highlight the ap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Medical Informatics and Decision Making
سال: 2020
ISSN: 1472-6947
DOI: 10.1186/s12911-020-1069-4